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a b s t r a c t

A model of the microconvection of an isothermally incompressible fluid, which can be used to investigate
convection in weak force fields and on microscopic scales and can be characterized by non-solenoidality
of the velocity field, is considered. An invariant solution in an infinite vertical strip occupied by a fluid is
studied in the case where the heat flux on the two opposite faces of the strip fluctuates in antiphase. The
use of the model of microconvection to construct an invariant solution gives rise to several non-standard-
value initial-boundary problems. Their solvability in classes of Holder functions is proved.

© 2009 Elsevier Ltd. All rights reserved.

1. Model of microconvection

It has been noted1,2 that the classical Oberbeck–Boussinesq model is unsuitable for describing convection if the microconvection
parameter, which is equal to the ratio between the orders of the velocities generated by volume expansion of the fluid and the buoyancy
factor, is fairly small. The term “microconvection” was introduced to describe the convection of a fluid under low gravity, as well as on
microscopic scales, and for fluids, whose properties ensure small values for the microconvection parameter. The derivation of the classical
equations of convection and of the Oberbeck–Boussinesq equations (see, for example, Ref. 2) from the general laws of conservation of mass,
momentum and energy relied on a simplification of these laws. This simplification was based on the hypothesis that a fluid is isothermally
incompressible, under which the equation of state of the medium describes a linear dependence of the density on the temperature, and
on the assumption that when the motion of a fluid is described, it can be considered to be incompressible, i.e., the velocity field can be
considered to be solenoidal. In the momentum conservation equation, the small deviations of the density from the average value caused
by the non-uniformity of the temperature are taken into account only in the buoyancy force. The effect of the dissipative forces is not
taken into account in the energy conservation equation.

If we start out from the exact mass and momentum conservation equations, but take a simplified energy conservation equation, as
before, and assume that all the transfer coefficients are constant, we will obtain a model of microconvection, and the velocity field will
be non-solenoidal. Assuming, however, that the dependence of the fluid density on the temperature T has the form � = �0/(1 + �T), where
� is the coefficient of thermal expansion, we can write down a model of microconvection with a new required velocity W = V−���T,
where � is the thermal diffusivity. Then div W = 0. The temperature dependence of the fluid density used in the deriving the model of
microconvection enables us not just to switch to a solenoidal field of the modified velocity. The heat capacity at constant pressure does
not depend on the pressure if and only if the equation of state has the form indicated (see Ref. 3*).

We will consider as mathematical models for modelling the convection of a fluid under weak gravity, the initial-boundary-value
problem for the classical Oberbeck–Boussinesq equations of convection and for the equations of microconvection of an isothermally
incompressible fluid.

The mathematical model of microconvection consists of finding the modified velocity W, the modified pressure q (see Ref. 1 and 2
regarding the relation to the fluid pressure p) and the temperature that satisfy the system of equations
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in the region of flow �, the initial conditions at t = 0 and the boundary conditions on the surface �

(1.2)

(1.3)

Note that the condition of zero integral flow ensures the necessary condition of solvability of the problem in a closed region with rigid
impenetrable boundaries. This constraint can be avoided by considering the convective motions in a region with a free or elastic boundary.†

At the same time, the stationary problem for the equations of microconvection is correctly stated both under a temperature condition of
the second kind on the boundary of the region and under a condition of the first kind.4

2. Statement of the problem

The search for an invariant solution of microconvection problem (1.1)–(1.3) in a vertical strip reduces to solving non-standard initial-
boundary-value problems. The methods previously developed2,5,6 enable us to prove the unique solvability of each of them under the
smoothness and matching conditions imposed on the initial and boundary data.

In a Cartesian system of coordinates (x, y, z) chosen so that the vector of the force of gravity has the form g = (0, −g, 0), suppose a fluid
fills an infinite vertical strip |x| ≤ a, on whose rigid boundaries a heat flux is specified. If the magnitude of the heat flux is independent of z,
planar flows are possible in the strip. The initial velocity and temperature distributions (1.2) are independent of z, and the z component of
the velocity is equal to zero. The special class of solutions of the system of microconvection equations (1.1), which are invariant under the
operator ∂/∂y + �(t)∂/∂q, where �(t) is an arbitrary function of time, will be considered. According to the theory of the group properties of
differential equations,7 such solutions have the form

(2.1)

It follows from the second equation of system (1.1) that u = U(t), and it follows from the first equation that U’(t) = –(1 + �T)hx. The problem
of finding the function h(x, t) is not fundamental, and when U and T are known, the function h is specified, apart from an additive function of
time.1,2 The search for the invariant solution (2.1) reduces to solving the second boundary-value problem for the non-linear heat conduction
equation and then solving the first boundary-value problem for the linear equation, which is not a differential equation in the usual sense.
Equations of this type are called loaded equations.8 Difference methods of solving initial-boundary-value problems for loaded differential
and integrodifferential equations have been investigated.9 The special case of a problem with a loaded equation was considered in Voronin’s
thesis.1

The initial-boundary-value problems that arise during the search for the invariant solution (2.1) in a vertical strip will be considered in
dimensionless form. We will select the half-width a of the strip as the characteristic dimension, a2/� as the characteristic time, ��/a as the
characteristic velocity and T* as the characteristic temperature, where � is the kinematic viscosity. We will introduce two dimensionless
parameters, viz., the Prandtl number Pr = �/� and the Boussinesq number � = �T*, and we will retain the original notations U, T and � for
the dimensionless functions.

The initial-boundary-value problems for the non-linear heat conduction equation and the y component of the velocity have the form

(2.2)

(2.3)

Note that since the quantity Tx(±1, t) is proportional to the heat flux on the boundary, which is regarded as specified, the function U(t)
can also be regarded as specified in problem (2.2). The function � satisfies the relation

We will assume that the conditions

(2.4)
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hold for an arbitrary finite tf. We take the matching conditions in the form

(2.5)

3. The solvability of the initial-boundary-value problems for the heat conduction equation and the loaded equation

If we seek the functions T and � in the form of expansions in series of powers of the small parameter �, the expansion of T in powers of
� begins from the zero-order term, and the expansion of � begins from the first-order term:

(3.1)

The leading terms in the expansions are solutions of the following problems

(3.2)

(3.3)

with matching conditions that are corollaries of conditions (2.5) obtained by separating them for �.
The function T(0) is the solution of the standard problem for the heat conduction equation (3.2). The problem of its solvability can be

investigated using to a well-known approach.5

For the function �(1) the question of the solvability of problem (3.3) is complicated in the general case. This problem is non-standard
because the equation contains the derivative of the function sought at boundary points. It will be investigated using an additional repre-
sentation of �(1) in the form of an expansion in even and odd components.

We note that all the remaining functions T(k) and �(k) can be specified in a recursive form as solutions of the following boundary-value
problems

(3.4)

(3.5)

The necessary matching conditions hold here as a consequence of conditions (2.5).

3.1. The solvability of the initial-boundary-balue problems for the leading expansion terms

We will introduce concise notation for certain spaces that will be encountered frequently below:

When conditions (2.4) and matching conditions (2.5) hold, boundary-value problem (2.2) for the temperature is solvable, and T (0) ∈ C̃3.5
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Next, let �(1) = �1 + �2, where �1 is the even component, and �2 is the odd component of the velocity �(1) along x. For �2 we have the
classical first boundary-value problem

Here F̄2(x, t) and �20(x) are odd components of the functions

1∫

−1

T0(x)dx + gT (0)(x, t) and �0(x), respectively.

The solvability of the problem for �2 can be proved using to a well-known procedure.5 The function �2(x, t) belongs at least to the class
C̃2, since v20(x) ∈ C2+˛([−1, 1]) and F2(x, t) ∈ C̃3.

We will dwell on the problem for the even component of the velocity, in whose equation a non-local derivative remains:

(3.6)

(3.7)

(3.8)

Here F̄1 = F̄1(x, t) is the even component of the function

1∫

−1

T0(x)dx + gT (0)(x, t) of the class C̃3 in Eq. (3.3). The initial function �10(x) (the even

component of the initial velocity) is a function of the class C2+�([–1, 1]). In particular, the equality �10(±1) = 0 holds here as a consequence
of the conditions �0(±1) = 0 (see the corresponding condition (2.5)).

We expand the function �1 in a generalized Fourier series, taking its eveness into account, in such a way that boundary conditions (3.8)
are automatically satisfied. These conditions have the form

Taking into account the orthonormality of the functions cos 	nx in the interval [−1, 1], we write Eq. (3.6) in the form

(3.9)

where f(t) is an unknown function of the values of the derivative of the function sought on the boundary f(t) = �1x(1, t). It follows from Eq.
(3.9) that the following representation holds for any n

(3.10)

The following notation was introduced for the generalized Fourier coefficients in the expansions of unity, the right-hand side of Eq. (3.6)
and the initial function (3.7) in series in cos 	nx

The properties of the Fourier coefficients are specified by the properties of the corresponding functions for which the expansions were
obtained, and will be taken into account below. We also note that

We multiply each equality (3.10) by (–1)n+1	n and sum over n from 0 to ∞. Then, to find the function f(t), we have the integral equation

(3.11)

where

(3.12)
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Here Q(0) = f(0), and the kernel of the integral equation is a function of the form

(3.13)

It should be noted that convergence of the kernel is equivalent to convergence of the improper integral

Here �(�) is Laplace’s function.10 The second term is already a smooth function when z ≥ 0.
Representing series (3.13) by an integral of the step function

we can obtain the limit

which enables us to isolate a weak singularity of the form 1/
√

z from the kernel (3.13) and to rewrite integral equation (3.11) in the form

(3.14)

Let L(t − 
) be the smooth component of the polar kernel. Equation (3.14) is classified as an Abel-type Volterra integral equation of the
second kind.11,12 Integration of the kernel component K(t, 
) = 1/

√
t − 
 of integral equation (3.14) leads to the expression

Using a combined form of the two parts of Eq. (3.14) and the function 	K(t, 
), we obtain the Volterra integral equation

(3.15)

with a constrained kernel consisting of K2(t, �) and the result of combining

t∫

0

L(t − 
)f (
)d
 and �K(t, 
). After solving integral equation

(3.15), we obtain the solution of the original integral equation (3.14).
Note that the Fourier coefficients Cn and Fn(t) of the functions �10(x) ∈ C2+�([–1, 1]) (�10(±1) = 0) and F̄1(x, t) ∈ C̃3 have properties that

ensure convergence of the integral in relation (3.12), since the following inequalities hold13

These estimates lead to a conclusion regarding the convergence of the series in relation (3.12), since for t ≥ 0 and x ∈ [–1, 1] there are

convergent majorant series for them of the forms
∞∑

n=1

M̄C
n2 and

∞∑
n=1

M̄F
n2 , respectively, whence it follows that Q(t) ∈ C2+(1+˛)/2([0,tf]) (this is

ensured by the properties of the function F̄I).
Thus, integral equation (3.15) is solvable.12 The function f(t) belongs at least to the class C1+˛/2([0,tf]), enabling us to assert that problem

(3.6)–(3.8) is solvable in the class of functions C̃2, in agreement with the existing results.5

3.2. Scheme of the proof of the solvability of initial-boundary-value problems (3.4), (3.5)

The solution of problem (2.2), (2.3), which can be represented by the formal power series (3.1), is determined successively as solutions
of problems (3.2), (3.3) and (3.4), (3.5). The solvability of problem (3.2), (3.3) for the leading expansion terms, which was proved in the
preceding section, leads to the limits5
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The principal points in the proof of the solvability of problem (3.6)-(3.8) for the highest-order approximation �(1) are the search for a
solution in the form of a sum of the odd and even components and the subsequent method for determining the function f(t). The kernel
of the integral equation for finding f(t) is specified by the structure of the preceding differential equation, and the smoothness properties
of the function sought depend mainly on the smoothness of the corresponding approximation for the temperature. The solvability of the
recursive boundary-value problems (3.4), (3.5) in the Holder classes C̃m can be proved by induction using the method demonstrated above.
Note that, according to Ref. 5 and the structure of differential equations (3.4) and (3.5), the following limits hold

We require that the initial temperature T0 = T0(x) should satisfy the inequality

(3.16)

We will demonstrate the convergence of series (3.1) for sufficiently small � > 0. Along with series (3.1), consider the power series with
constant coefficients

(3.17)

where

By analogy with the previously described techniques,6 we can show that the power series z converges to the small positive root z̃ of the
quadratic equation z = z0 + ε(C1CUz + 2C1z2) if � satisfies the condition � < �0, and �0 is expressed in terms of C1, CU, z0 and is a consequence
of the positive values of the discriminant and one of the coefficients of the quadratic equation. The first series z in (3.17) is majorant for the
corresponding series (3.1) if T(k) are replaced by their norms in the space C(3+�).

The series y converges to the solution of the equation

if we require that the inequality � < �0, where �̄0 is expressed in terms of C2, CU, CT, Pr and z̄, would hold.
It should be noted that the second series y in (3.17) is also majorant for the series that is obtained from the corresponding series (3.1)

if the functions �(k) are replaced by their norms in the space C(2+�). Therefore, series (3.1) converge to the solution of problems (2.2) and
(2.3) if and only if � ∈ [0, �̃], �̄ ≤ min[�0, �̃0].

Thus, we have the following theorem.

Theorem. Let conditions (2.4), (2.5) and (3.16) hold. There is a ε̃ > 0 such that for 0 ≤ � ≤ �̃ problems (2.2) and (2.3) have a solution of the
following form

This solution is an analytic function of � at the point � = 0.
The uniqueness of the solution can be established by contradiction.
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3.3. Remark regarding the exact solution of the linearized microconvection problem

We have examined the problem of the solvability of initial-boundary-value problems that arise during the procedure for finding the
exact solution of the complete model of microconvection. The exact, invariant solution (2.1) was constructed for the linearized model of
microconvection and for the Oberbeck–Boussinesq model of convection.1,2 Periodic solutions were studied in the case of U(t) = −sin �t
(see problem (3.2)) and were investigated numerically.14 For small values of � and values of � comparable with unity, a conclusion was
drawn regarding the features of a microconvection regime, specifically regarding the helical periodic motion (in which the primary turn
is an ellipse) of a fluid particle with a slow drift in the vertical direction. This conclusion was confirmed by an analysis of the non-trivial
component of the motion based on the Krylov–Bogolyubov averaging method.14 Unlike the complicated drift of a fluid particle predicted
by the linearized model of microconvection, the trajectory calculated using the Oberbeck–Boussinesq model is a segment of a vertical
straight line. Qualitative differences in the behaviour of trajectories obtained form the classical model of convection and the model of
microconvection were thereby demonstrated.
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